A Multimode Dial for Interatomic Interactions

نویسنده

  • Hakan E. Türeci
چکیده

I nteractions mediated by photons are ubiquitous in physical systems. For instance, the van der Waals interaction between atoms in free space—variants of which play a fundamental role in many physical, chemical, and biological processes—is mediated by photons of the electromagnetic vacuum between the atoms. Interestingly, while this interaction is weak and decays with interatomic separation when the atoms are in free space, its strength and range can be modified when the atoms are placed between the mirrors of an optical cavity. When such cavity quantum electrodynamics (QED) systems contain many atoms, they can be used to explore collective quantum phenomena. However, if the atoms dominantly couple to a single cavity light mode, as is usually the case, the photonmediated interatomic interactions are long-ranged, limiting the phenomena that can be explored. Benjamin Lev from Stanford University, California, and colleagues [1] have now engineered photon-mediated interactions in a cavity QED system that can be tuned from long range to short range. Such tunable-range interactions could be used to study collective quantum phenomena and phase transitions that are currently beyond the reach of other atomic systems and other cavity QED systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback control of an interacting Bose-Einstein condensate

Figure 1: Control setup used to reduce multimode density fluctuations in a BEC Recently there has been interest in utilising BoseEinstein condensates (BEC) and atom lasers for precision metrology [1, 2]. However, research has demonstrated that the transverse and longitudinal spatial modes of a BEC exhibit complicated multimode behaviour [3], thereby reducing the precision of atom interferometri...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

The Effective Potential Function of the Liquid Mercury on the Metallic and Nonmetallic States by Using the Experimental Internal Pressure

The major reason for the prediction of thermodynamic properties of mercury lies in the fact that itsintermolecular interactions highly depend on temperature and density. Internal pressure is a good criterion toinvestigate the density dependence of the interatomic interactions. Because its physical base is a forcetending to close together the molecules that is intermolecular interactions, and as...

متن کامل

The Influence of Machine Parameters on the Properties of Double Jersey Knitted Fabrics

The present work is an experimental account of the way in which several machine settings, particularly cylinder knock-over and dial-height, influence fabric dimensions, course length, bending behavior and load extension of fabrics produced on a circular knitting machine. The results show that there are certain optimum settings for such variables as knock-over depth and dial-height for producing...

متن کامل

A Novel Multimode Mobile Robot with Adaptable Wheel Geometry for Maneuverability Improvement

In this paper, an innovative mobile platform is presented which is equipped by three new wheels. The core of the new idea is to establish a new design of rigid circular structure which can be implemented as a wheel by variable radius. The structure of wheel includes a circular pattern of a simple two-link mechanism assembled to obtain a wheel shape. Each wheel has two degrees of freedom. The fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018